US009164667B2

a2z United States Patent (10) Patent No.: US 9,164,667 B2
Speer et al. (45) Date of Patent: Oct. 20, 2015
(54) WORD CLOUD ROTATABLE THROUGH N 6,704,698 B1* 3/2004 Paulsenetal. 704/1
DIMENSIONS VIA USER INTERFACE 7,003,725 B2* 2/2006 Castellanos et al. ... 715/257
7,644,047 B2* 1/2010 Assadianetal. 706/1
. . . 8,254,692 B2* 82012 Ramachandrulaetal. ... 382/197
(71) Applicant: Lumlnpso Technologies, Inc., 8,402,030 B1* 3/2013 Pyleetal. ..cccoovrvrnirn. 707/738
Cambridge, MA (US) 2004/0034660 Al* 22004 Chenetal. .. 707/104.1
2006/0206483 Al* 9/2006 Knepper et al. .. 707/7
(72) Inventors: Robert Speer, Cambridge, MA (US); 2008/0154926 Al* 6/2008 Newman 707/100
Yuri Vishnevsky, Cambridge, MA (US) 2010/0005083 Al* 12010 Morgana et al. 707/5
’ ’ 2010/0138426 Al* 6/2010 Nakayamaetal. 707/741
73) Assi . Lumi Technologies. I 2011/0040562 Al* 2/2011 Doyleetal. 704/251
(73) Assignee: Luminoso Technologies, Inc., 2011/0087668 Al* 4/2011 Thomas et al. . . 707/738
Cambridge, MA (US) 2012/0303637 Al* 11/2012 Carmeletal. ..ccccccocc 707/749
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 456 days. WordPress Tip: Rotating Flash Tag Clouds <http://idratherbewriting.
com/2009/02/19/rotating-flash-clouds-and-the-question-of-content-
(21) Appl. No.: 13/840,009 organization/>, Feb. 2009, 8 pages.*
Cui, Weiwei et al, Context Preserving Dynamic Word Cloud Visual-
(22) Filed: Mar. 15,2013 ization, IEEE Pacific Visualisation Symposium 2010, Mar. 2-5,
2010.*
(65) Prior Publication Data . .
* cited by examiner
US 2014/0282244 A1l Sep. 18, 2014
(51) Int.ClL Primary Examiner — Cesar Paula
GO6F 17720 (2006.01) Assistant Examiner — Mohammed-Ibrahim Zuberi
GO6F 3/0484 (2013.01) (74) Attorney, Agent, or Firm —Law Office of Ilya
GOG6F 1721 (2006.01) Libenzon
GO6F 17/30 (2006.01)
(52) US.CL (57) ABSTRACT
CPC GO6F 3/04842 (2013.01); GO6F 17/211 . .
(2013.01); GO6F 17/30061 (2013.01) A system and related method are disclosed for rendering a set
(58) Field of Classification Search of words linked to an n-dimensional vector space in a word
CPC GO6F 17/30061: GOGF 17/211 cloud rendered from a two-dimensional projection of the
uspC .. ’ 715/764 vector space, where the user can click and drag a word, and
See a hcatlonﬁleforcomletesearchhlsto the subspace and projection thereon will shift to place the
PP P ty: word where the user has dragged it in a new projection, and
(56) References Cited the other words in the cloud will shift correspondingly, offer-

U.S. PATENT DOCUMENTS

6,349,316 B2* 2/2002 Fein et al.
6,549,898 B1* 4/2003 Inaba et al.
6,654,739 B1* 11/2003 Apte etal.

..................... 715/267
................... 715/255

ing the user new insights. The importance of words in a
document set is represented by word size, and relatedness
between words demonstrated by color similarity.

20 Claims, 4 Drawing Sheets

Cheésecake Factor

eateries
airpo

convenient

Dunki rstreet
iashoppingmaibreakfast

ort
Kendallma”

across the street Caleria

dCCroOsSS

shopplng

muffing

b Cam br|

aACroSE mail right

meals »

mal

sightseeing

Cambnd’“‘“’e Galleria

Science Museum 0pt'On(%heeseceﬂ(e Factory across QUIHC

Cambridgeside Galleria Mall

US 9,164,667 B2

Sheet 1 of 4

Oct. 20, 2015

U.S. Patent

sindut sorjot Jo/pue
TOTI03]2S JOST 241200y

11l

a1 el
v SR} BY BONOUT JAsN
QUIBL] UF UOLIOW N
i S U0 paseq aoedsqgns
] 2SI THOL UOIISOT |]
o SHRI R EARN
adueyd proday

I

L
SUOTIONAS JOSTL J00[JT € $10]00 Arjdsip aduer)

911
SI0[00 PRIBIIOSSE M SI0300A JO 151} Avjdsi(y

st
A)LIBJIUIS JOJO3 YHA SSOUPAIRIRI JO 2I3ap SPIoM
U0 SJRHSUOWIP pue ‘Jojod eponied v uw pros pajojes e Aepdsig

143
SSAUPAIR[DT SPIOM JUIIA(]

011
SOIRUIPI00D UL 18 piom Avpdsic

811
ISY PRJUBMUN THOY SPIOM 0 YIS

601
dejioA0 OU ST AI0Y] JIUN SOJBUIPIOOD YIYS

301
SIIBUIPIO0D JWALING 18 PAAR]dSIp J1 depioac J0] 30y

L01
10p10 2215 Furpuoosep u AeidsIp 0] PIoM 1XaU J00[3

901
PROJD PIOAA UI spao Avpdsiqq

ol
sied
JORA-PIOM
P01 et — SN
aoedsgns
[RUOISUNRUIP-T
B 2R
01
<0l SojnqLIe 9ZIS
M. BN
adudsgns poM QIPIIE)
a1} 0Ju0
- odudsepp 171
YL I 8301334 SITAUMI0p
[{e 10ol0ig Sunpewm 101
Aeydsi(y sared
- JOJORA/PIOM
Jo 20uds
zIRp eIy
LA ETS)
£gt 0Tt
JOIAA SAWnIep
01 1000 4TSSy oo putg
001
aouds Avydsip
_ T OpIADI
@l 611 PO
307997] Asonb
0} 9AHO0)) 1a8n vidodoy IO

US 9,164,667 B2

Sheet 2 of 4

Oct. 20, 2015

U.S. Patent

(AL |

13 14
IUTSREL g

HAOMIIN

017
Aepdsi(q

([——— L07

30VJI3JU] HOHBIIUNUINIO))

6T SUBN \m.ﬁxﬁmm BIB(] RN

807
SUBIA Anuy veq

907
201A3(]
281018 ()7 oejIdjut
J]qRAOWIY JOALIP 2TRIOIS DJRAOUIDY
70 SALK(] PIBH
€07
AIOU] L1BPUOIIG
rh\rh
AIOUIIA] UTRTA]

90¢ yuauodwon) afei0lg vie(g

co¢ Juouodwo)y Anug vie(]

#o¢ wauodwo) Aejdsi(y

c0¢ wouoduio)y SuIssanoi]

007
J08S3004J

g 4Ly

10T
ERER RIS |
HONBIUNIUWO))

US 9,164,667 B2

Sheet 3 of 4

Oct. 20, 2015

U.S. Patent

90¢ wesuodwo)) 93e101S BIB(]

co¢ auodwo)y Anuyg vieq

$0¢ suodwo) Aepdsi(y

¢o< Juouodwon) FuIssanoig
LO€ wonedddy

oo
T —

—— ——
S —
—— ——
~ ——
— —
— —-—
— -
~—— —

Toe

T -
~—
—-—— ——
— =
— o—
S—
T m—
——

¢ Ol

00¢

US 9,164,667 B2

Sheet 4 of 4

Oct. 20, 2015

U.S. Patent

¥ "Old

l|e|N ELIS||eD) apisadpliquie)
>UCMDO ssoJae Ajojoe wxmuwmmmgwcoﬁo wnasnjn aduaidg
eLIs||e9 9gpriquie)

3ulPasIY3IS s3ueyd JUSIUSAUOD

|lew 3ulddoysSSo2E, ...

® sjesw

y3u jjew SO DR [|euull®Pio

Sueinerss jJoduie

Alse]
| Se > eaqiew suddoys e
QUWIED qeptsepiecidis iues

101264 9295994 D)

HILGAMEBID Al 3
AT~ 20 U5 B9OUSDS JOWUNSSHIN 1o

US 9,164,667 B2

1
WORD CLOUD ROTATABLE THROUGH N
DIMENSIONS VIA USER INTERFACE

TECHNICAL FIELD

Embodiments of the present invention relate generally to
computerized representations of multidimensional data sets,
and in particular to projection of multidimensional data sets
onto word clouds.

BACKGROUND ART

Word clouds exist to aid in the problem of comprehending
extremely large and complex masses of information concern-
ing the words they display. Examples abound of sets of data of
sufficient complexity to be unimaginable in their entirety.
Human intuition works very well when comparing two or
three categories of data; for example, the relationship
between height and weight in a population, which can be
depicted with a two-dimensional Cartesian graph, or the rela-
tionship between height, weight, and longevity, which
requires a three-dimensional graph; it may be hard to draw,
but it is not particularly taxing to the imagination. However, it
is quite common to encounter a database table that contains a
hundred or more columns, each recording a different category
of facts about the subject of study. To depict every relation-
ship between all of the categories of data in a hundred-col-
umned table would require a hundred-dimensional graph, or
a graph with not only an x-axis, a y-axis, and a z-axis, but 97
other axes; even if there were a way to draw such a graph in its
entirety, the result would be totally incomprehensible to even
the most adept mind at spatial reasoning.

One way to respond to this level of complexity is to project
the multiplicity of dimensions onto a two or three-dimen-
sional space, in such a way as to preserve some aspect of the
relationship between the many dimensions. The two or three
dimensional space in itself may be depicted in two or three
dimensions, and thus is amenable to human comprehension.
By way of analogy, imagine a light shining on a cube so that
its shadow is cast on a sheet of paper. When the light is shone
on a single face of the cube, and the paper parallels the cube’s
opposite face, the shadow of the cube on the paper, or its
two-dimensional projection, would be a square. If the paper
faced one corner of the cube and the light shone upon the
opposite vertex, the projection might appear hexagonal. A
person viewing a series of such projections, while under-
standing how they were produced, could use them to deduce
the shape of the overall cube.

Of course, to analyze a cube in this way would be unnec-
essary, but one way to explore a four-dimensional “cube,”
defined as a four-dimensional polyhedron in which all edges
are the same length and join orthogonally, is to view a series
of three-dimensional figures that represent projections of the
hypercube onto three dimensions. The same approach could
be used to study a 100-dimensional “cube.” Likewise, while it
is impossible to depict the relationship between 100 catego-
ries of data in a single comprehensible drawing, it is possible
to draw relationships between any two or three categories in
the set. Similarly, one may use this approach to depict rela-
tionships between two or three combinations of categories.
For instance, in a data set made up of physical and demo-
graphic data concerning a group of people, one could graph
height to weight ratio against blood pressure, which would be
aprojection of the data set onto two dimensions, one of which
was a combination of two dimensions in the data set. To
explore the relationships between other categories in the data
set would require a different projection. The foregoing

10

20

25

30

35

40

45

50

55

60

65

2

example is extremely simple. The selection of a projection,
and the number of relationships that the projection can pro-
duce, can be far subtler and involve much more sophisticated
mathematics.

Once the data has been projected onto a manageable set of
dimensions, the challenge is to portray the information in that
projection in a way that is intuitively meaningful to a person
viewing the depiction. One efficient way to depict a three-
dimensional set of relationships between categories of data,
particularly data pertaining to texts, is with a “word cloud.” A
word cloud is a kind of weighted list in which a set of words,
often words taken from a particular text, is displayed as on a
page, and in which at least the font size of each depicted word
varies depending on some attribute concerning the word. For
example, the positions of the words in the word cloud could
be determined by alphabetical order, and the sizes of the
words in the word cloud could depend on how frequently each
word appears in a text. The positions of the words in the cloud
could also be determined by size of the words, by aesthetic
considerations, or by further information about relationships
between the words that the designer of the word cloud wished
to convey. Some word clouds use colors as well as numbers to
show something about the words; a bi-chromatic word cloud,
for example, could allow the viewer to see which person in a
dialogue uttered a given word. A more subtle use of coloring
is exemplified by collocate clouds, which use shades of color
to depict how frequently a given word appears only with the
word the user has provided, while the size of a given word
indicates how frequently the word appears in a text within a
given distance of the word provided by the user. A cloud that
uses all of the attributes mentioned above to display some
piece of information about a word can depict a surprising
amount of data in an intuitively clear way, if properly
designed.

It is hardly surprising that word clouds, which necessarily
involve a lot of searching, sorting, and computation involving
large volumes of data, are generally created by software, and
are most often encountered in internet applications. There are
many software programs available on the web or on stand-
alone computers that generate various kinds of word clouds,
using the design parameters described above among others.
The extant word cloud generation programs have in common
a tendency to produce a single view of a given word cloud,
reflecting one particularly interesting way of analyzing the
textual or other data the program is designed to display. While
the results can be fascinating, the programs currently in exist-
ence do not permit the user to explore the underlying data sets
more fully by customizing the word clouds and manipulating
the data projections that form the clouds’ internal basis. Thus,
there remains a need for a word cloud generating program that
fully exploits the word clouds’ potential to bring complex
data within the reach of intelligent comprehension.

SUMMARY OF THE EMBODIMENTS

Itis therefore a purpose of this invention to provide the user
with a visual tool that enables the user to shift the projection
underlying a word cloud to produce a clearer vision of the
data the user needs to understand. It is a further purpose of this
invention to allow users intuitively to explore multifaceted
relationships between words in one or many documents by
representing those relationships in a direct and easily-under-
stood way. It is yet a further object of this invention to enhance
the traditional word cloud by making it able to change fluidly
in response to user input.

One embodiment of this invention is a method performed
by at least one computer or similar device having a processor

US 9,164,667 B2

3

and a memory that projects an n-dimensional textual data set
onto a two-dimensional subspace, displays it in a word cloud
representation of a two-dimensional projection of the data set,
and finally allows the user to explore the word-cloud by
selecting and moving any word in the word cloud. First, the
computer or computers provide a display space with a two
dimensional coordinate system in which each pixel in has a
corresponding set of coordinates. Next, the system generates
a textual data set whose members consist of a set of words,
each of which is associated with an n-dimensional vector
whose n components the system populates with numerical
values. Those vectors together define an n-dimensional data
space. The system then calculates a size attribute for each
word in the textual data set by finding some metric according
to which it can rank the words. The system then stores the data
set in memory.

Next, the system projects all of the vectors described above
onto two dimensions, and flattens the projection into a word
cloud. It does so by creating an initial two-dimensional sub-
space, and storing it in its memory. The system then projects
the vectors from the textual data set onto the two-dimensional
subspace. Next, the system proceeds to flatten the two-dimen-
sional projection just produced onto a word cloud. It does so
by placing each word from the textual data set in the display
space at coordinates dictated by its vector’s projection on the
subspace. Each word is displayed with a font size correspond-
ing to its size attribute.

The last portion of the method allows the user to explore the
textual data set interactively using the word cloud. The user
selects and moves a word in the cloud, using a mouse, touch-
screen, keyboard, or other component that allows the user to
perform manual manipulations on images displayed by com-
puters and similar devices. The system uses a particular ani-
mation frame rate to perform a series of shifts, causing the
selected word to follow (ideally without perceptible delay)
the motion the user has commanded it to follow. For each
frame, the system calculates the change in position corre-
sponding to the portion of the user’s motion input that
occurred during that frame. The system then changes the
two-dimensional subspace so that the projection of the
selected word’s associated vector causes the selected word to
be displayed at the new location dictated by that frame’s
change in position. The system then repeats the step of vector
projection using the new subspace, and places each word at its
new projection. Those steps are repeating for each frame until
the system detects that the user has stopped moving the
selected word, at which point the word cloud is displayed as
before, using each word’s associated vector’s most recent
projection based on the most recently modified subspace.

In a related embodiment, the step of generating a textual
data set is accomplished by providing a document set, creat-
ing a matrix containing data from the set, and then using the
matrix to produce the n-dimensional vectors. A further
method involves maintaining some representation of each
document from that set of documents, accepting a user-input
search query, matching the query to the document represen-
tations, and displaying any documents that match the query.
In another embodiment, the size attribute of each word is
determined using a term frequency-inverse document fre-
quency calculation. In a further embodiment, the initial cre-
ation of the subspace is performed in such a way that each of
the n dimensions’ projections points in a different direction in
the two-dimensional subspace. An additional embodiment
involves maintaining a list of word categories in the machine
memory, for example containing swear-words or other words
the user does not want displayed, and altering the display of
any word that matches a category from that list. In a further

25

30

35

40

45

50

55

60

65

4

embodiment still, the system calculates a metric for degree of
relatedness between two words, and upon receiving a user
selection of a word displays the selected word in a color that
contrasts with the default display color, and displays all other
words with coloration indicating the degree of relatedness
between that each word and the selected word. In still another
method, the degree of relatedness between two words is deter-
mined by cosine similarity. In addition, one related method
involves displaying a list of vectors in the data space, each
with an associated color, recording a user selection of one or
more vectors from that list, and changing the display color of
each word to reflect its similarity to each selected word.
Finally, one more method involves the user creation of a
vector on that list of vectors with associated colors, by accept-
ing user-input search query, converting that query into a vec-
tor in the n-dimensional data space, assigning a display color
to that vector, saving the vector with its display color into
memory, and displaying the vector and display color as a
member of the list of vectors.

Also disclosed herein is a system for performing the above
method. The system includes one computer or similar device,
or a set of such devices linked by a network, coupled to a
display and to data entry means, whose processor or proces-
sors are instructed by computer programs to create an appli-
cation. The application has a Processing Component config-
ured to generate a textual data set whose members consist of
a set of words, each of which is associated with an n-dimen-
sional vector populated by n numerical values, the vectors
defining an n-dimensional data space. The Processing Com-
ponent is also designed to calculate a size attribute for each
word in the textual data set. The Processing Component also
performs the calculations to project those vectors onto two
dimensions, by creating an initial two-dimensional subspace
and calculating the projection of each n-dimensional vector
onto that subspace. Finally, the Processing Component
derives a new two-dimensional subspace space and vector
projections thereon given a user-selected vector in the n-di-
mensional vector space, and data representing a change in
position, deriving the new subspace to reflect the change in
position. The application also has a Display Component con-
figured to display word clouds in a display space with a two
dimensional coordinate system in which each pixel has a set
of coordinates, by displaying a word cloud given the set of
n-dimensional vectors with projections and corresponding
words with calculated size attributes. The Display Compo-
nent places each word in at coordinates determined by the
word’s vector’s projection, and displays each word with a
font size corresponding to its size attribute. The application
also has a Data Entry Component configured to capture data
entered by the user. In particular, the Data Entry Component
captures a user selection of a word displayed in the word
cloud and records the selection of that word’s corresponding
n-dimensional vector. The Data Entry Component also cap-
tures a user motion input by selecting a frame rate for ani-
mating the movement corresponding to the user’s motion
input. Then, for each frame, it calculates the change in posi-
tion corresponding to the portion of the user’s motion input
that occurred during the frame. It repeats this for each frame
until the user stops moving the selected word. The Data Entry
Component also identifies the cessation of the motion input.
Finally, the application’s Data Storage Component stores the
textual data set in the memory so as to preserve each word’s
relationship with its associated vector, stores each new
instance of the subspace in the memory, and stores each
vector’s projections in the memory.

In a related embodiment, the Processing Component is
configured to generate the textual data set by providing a

US 9,164,667 B2

5

document set, obtaining the words from the document set,
creating a matrix containing data concerning the words and
documents, and using the matrix to produce the n-dimen-
sional vectors. In an additional embodiment, the Data Storage
Component is configured to maintain a representation of each
document in its memory, the Data Entry Component is con-
figured to accept a query from a user via the device or devices’
manual data entry means, the Processing Component is con-
figured to match the query to the document representations,
and the Display Component is configured to display matching
documents. In another embodiment, the Processing Compo-
nent is configured to calculate each word’s size attribute using
a term frequency-inverse document frequency calculation.
According to another embodiment, the Processing Compo-
nent is further configured to initialize the subspace so that
each of the n dimensions’ projections points in a different
direction within the subspace. In an additional embodiment,
the Data Storage Component is further configured to maintain
a list of word categories in its memory, such as a list of words
whose display the user considers inappropriate, the Process-
ing Component is configured to compare words from the
textual data set to the word categories on the list, and the
Display Component is configured to alter the display of words
that match. A further embodiment involves configuring the
Processing Component to calculate a metric for degree of
relatedness between two word/vector pairs and configuring
the Display Component to display a selected word in a color
that contrasts with the default display color and to display all
other words with coloration indicating the degree of related-
ness between each word and the selected word. In yet another
embodiment, the Processing Component is configured to cal-
culate the metric for degree of relatedness between two vec-
tors using cosine similarity. Under another embodiment, the
Display Component is configured to display a list of vectors
in the data space, each with an associated color, and given one
or more selected vectors from the list to change the display
color of each word to reflect its similarity to each selected
vector, and the Data Entry Component is configured to record
a user selection of one or more vectors from the list. Finally,
in one more embodiment the Data Entry Component is con-
figured to accept a user-input search query, the Processing
Component is configured to convert that query into a vector in
the n-dimensional data space and to assign a display color to
the vector, the Data Storage Component is configured to save
the vector with its display color in the device memory, and the
Display Component is configured to display the vector with
its display color as a member of the list of vectors.

Other aspects, embodiments and features of the invention
will become apparent from the following detailed description
of the invention when considered in conjunction with the
accompanying figures. The accompanying figures are for
schematic purposes and are not intended to be drawn to scale.
In the figures, each identical or substantially similar compo-
nent that is illustrated in various figures is represented by a
single numeral or notation. For purposes of clarity, not every
component is labeled in every figure. Nor is every component
of'each embodiment of the invention shown where illustration
is not necessary to allow those of ordinary skill in the art to
understand the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The preceding summary, as well as the following detailed
description of the invention, will be better understood when
read in conjunction with the attached drawings. For the pur-
pose ofillustrating the invention, presently preferred embodi-
ments are shown in the drawings. It should be understood,

10

15

20

25

30

35

40

45

50

55

60

65

6

however, that the invention is not limited to the precise
arrangements and instrumentalities shown.
FIG. 1 is a flow chart illustrating the disclosed method.
FIG. 2 is a schematic diagram illustrating an electronic
device, as described herein.
FIG. 3 is a schematic diagram illustrating a web applica-
tion’s structure, and the elements of the claimed system.
FIG. 4 is a screen-shot of a word cloud produced by an
embodiment of the disclosed invention.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

The disclosed invention produces a data set whose ele-
ments are word-vector pairs. Each vector has a certain num-
ber of components, denoted herein by the letter n, and each of
the n components contains some numerical datum concerning
the word associated with the vector. As the foregoing discus-
sion makes clear, the set of vectors may be seen as an n-di-
mensional set, and when n is a hundred or more, involves a
confusingly large quantity of data. The textual data set may be
generated via an intermediate step involving a matrix con-
taining data that concerns relationships between words in
texts, such as term-document matrix or a word-association
matrix. The invention projects the set of vectors onto a two-
dimensional space, and then uses the positions of the projec-
tions in that space to display a word cloud. The words in the
cloud have font sizes corresponding to some measure of the
words’ relative importance, and can be colored to indicate
relationships between the words. The user can click and drag
any word in the cloud, and the motion of the word is repro-
duced by the invention by changing the two-dimensional
subspace, and recalculating the vector projections on that
subspace, to cause the resultant word cloud to display the
selected word where it has been moved (or near to that spot).
The other words in the cloud also move according to the
shifted projection. In this way, the user can view the data set
from many different directions in the original data space, and
gain insight into the relationships between the words and their
associated vectors.

To persons skilled in the art, it will be apparent that the
above described manipulations involve performing a vast
number of arithmetic calculations extremely rapidly. A single
document can contain thousands of words; some, like the
Oxford English Dictionary contain hundreds of thousands.
Even in a very small collection of this kind, of approximately
one hundred documents each containing only about a thou-
sand distinct words, represented in a term-document matrix
representation, if every word is represented by a 100-dimen-
sional vector, projecting all of the vectors in the space onto
two 100-dimensional basis vectors would require hundreds of
thousands of multiplications and additions, followed by the
storage of all the thousands of projection vectors in a readily
available form for further manipulation. Considering that this
set of calculations must be performed in milliseconds to
smoothly animate the motion of words in the cloud to follow
auser input in real time, a computer-based solution is the only
way to produce the effects the disclosed method can achieve.

Definitions. As used in this description and the accompa-
nying claims, the following terms shall have the meanings
indicated, unless the context otherwise requires.

An “electronic device” is defined herein as including per-
sonal computers, laptops, tablets, smart phones, and any other
electronic device capable of supporting an application as
claimed herein.

A “word” is any string of symbols that may be represented
as text onan electronic device as defined herein. In addition to

US 9,164,667 B2

7

single words made of letters in the conventional sense, the
meaning of “word” as used herein includes without limitation
a phrase made of such words, a sequence of nucleotides
described by AGTC notation, any string of numerical digits,
and any string of symbols whether their meanings are known
or unknown to any person.

A “vector space” follows the mathematical definition of a
vector space as a non-empty set of objects called “vectors,”
and is closed under the operations of vector addition and
scalar multiplication. In practical terms, the vectors discussed
herein will consist of lists of numbers, where each entry in the
list is called a “component” of the vector. A vector with n
components is described herein as an “n-dimensional vector.”
A vector space is “n-dimensional” if it is spanned by a set of
n vectors. For the purposes of this application, it will be
assumed that the large collections of vectors with n compo-
nents contemplated by this invention will span an n-dimen-
sional space, although it is theoretically possible that the
space defined by a particular collection of n-dimensional
vectors as defined herein will have fewer than n dimensions;
the invention would still function equally well under such
circumstances. A “subspace” of an n-dimensional vector
space is a vector space spanned by fewer than n vectors
contained within the vector space. In particular, a two dimen-
sional subspace of a vector space may be defined by any two
orthogonal vectors contained within the vector space.

“Projection” of one vector u onto another vector v, as used
herein, shall mean the orthogonal projection of u onto v, as
defined in the following formula:

u-v
u-u

where the dot product u-v is defined for all u and v of n
dimensions as the conventional dot or scalar product of two
vectors, and in practical terms is defined as:

n

§ Uivi

i=0

A vector’s “norm” is a scalar value indicating the vector’s
length or size, and is defined in the conventional sense for an
n-dimensional vector a as:

> 2
llall = | X af
=0

A vector is “normalized” if it has been turned into a vector
of'length 1, or “unit vector,” by scalar-multiplying the vector
with the multiplicative inverse of its norm.

A device or component is “coupled” to an electronic device
if it is so related to that device that the product or means and
the device may be operated together as one machine. In par-
ticular, a piece of electronic equipment is coupled to an elec-
tronic device if it is incorporated in the electronic device (e.g.
a built-in camera on a smart phone), attached to the device by
wires capable of propagating signals between the equipment
and the device (e.g. a mouse connected to a personal com-
puter by means of a wire plugged into one of the computer’s
ports), tethered to the device by wireless technology that
replaces the ability of wires to propagate signals (e.g. a wire-

10

15

20

25

30

35

40

45

50

55

60

65

8

less BLUETOOTH® headset for a mobile phone), or related
to the electronic device by shared membership in some net-
work consisting of wireless and wired connections between
multiple machines (e.g. a printer in an office that prints docu-
ments to computers belonging to that office, no matter where
they are, so long as they and the printer can connect to the
internet).

“Data entry means” is a general term for all equipment
coupled to an electronic device that may be used to enter data
into that device. This definition includes, without limitation,
keyboards, computer mouses, touchscreens, digital cameras,
digital video cameras, wireless antennas, Global Positioning
System devices, audio input and output devices, gyroscopic
orientation sensors, proximity sensors, compasses, scanners,
specialized reading devices such as fingerprint or retinal scan-
ners, and any hardware device capable of sensing electromag-
netic radiation, electromagnetic fields, gravitational force,
electromagnetic force, temperature, vibration, or pressure.

An electronic device’s “manual data entry means” is the set
of all data entry devices coupled to the electronic device that
permit the user to enter data into the electronic device using
manual manipulation. Manual entry means include without
limitation keyboards, keypads, touchscreens, track-pads,
computer mouses, buttons, and other similar components.

An electronic device’s “display means” is a device coupled
to the electronic device, by means of which the electronic
device can display images. Display means include without
limitation monitors, screens, television devices, and projec-
tors.

To “maintain” data in the memory of an electronic device
means to store that data in that memory in a form convenient
for retrieval as required by the algorithm at issue, and to
retrieve, update, or delete the data as needed.

The system and method disclosed herein will be better
understood in light of the following observations concerning
the electronic devices that support the disclosed web appli-
cation, and concerning the nature of applications in general.
An exemplary electronic device is illustrated by FIG. 2. The
processor 200 may be a special purpose or a general purpose
processor device. As will be appreciated by persons skilled in
the relevant art, the processor device 200 may also be a single
processor in a multi-core/multiprocessor system, such system
operating alone, or in a cluster of computing devices operat-
ing in a cluster or server farm. The processor 200 is connected
to a communication infrastructure 201, for example, a bus,
message queue, network, or multi-core message-passing
scheme.

The electronic device also includes a main memory 202,
such as random access memory (RAM), and may also include
a secondary memory 203. Secondary memory 203 may
include, for example, a hard disk drive 204, a removable
storage drive or interface 205, connected to a removable
storage unit 206, or other similar means. As will be appreci-
ated by persons skilled in the relevant art, a removable storage
unit 206 includes a computer usable storage medium having
stored therein computer software and/or data. Examples of
additional means creating secondary memory 203 may
include a program cartridge and cartridge interface (such as
that found in video game devices), a removable memory chip
(such as an EPROM, or PROM) and associated socket, and
other removable storage units 206 and interfaces 205 which
allow software and data to be transferred from the removable
storage unit 206 to the computer system.

The electronic device may also include a communications
interface 207. The communications interface 207 allows soft-
ware and data to be transferred between the electronic device
and external devices. The communications interface 207 may

US 9,164,667 B2

9

include a modem, a network interface (such as an Ethernet
card), a communications port, a PCMCIA slot and card, or
other means to couple the electronic device to external
devices. Software and data transferred via the communica-
tions interface 207 may be in the form of signals, which may
be electronic, electromagnetic, optical, or other signals
capable of being received by the communications interface
207. These signals may be provided to the communications
interface 207 via wire or cable, fiber optics, a phone line, a
cellular phone link, an radio frequency link or other commu-
nications channels. The communications interface in the sys-
tem embodiments discussed herein facilitates the coupling of
the electronic device with data entry devices 208, which can
include such manual entry means 209 as keyboards, touch-
screens, mouses, and trackpads, the device’s display 210, and
network connections, whether wired or wireless 213. It
should be noted that each of these means may be embedded in
the device itself, attached via a port, or tethered using a
wireless technology such as BLUETOOTH®.

Computer programs (also called computer control logic)
are stored in main memory 202 and/or secondary memory
203. Computer programs may also be received via the com-
munications interface 207. Such computer programs, when
executed, enable the processor device 200 to implement the
system embodiments discussed below. Accordingly, such
computer programs represent controllers of the system.
Where embodiments are implemented using software, the
software may be stored in a computer program product and
loaded into the electronic device using a removable storage
drive or interface 205, a hard disk drive 204, or a communi-
cations interface 207.

Persons skilled in the relevant art will also be aware that
while any device must necessarily comprise facilities to per-
form the functions of a processor 200, a communication
infrastructure 201, at least a main memory 202, and usually a
communications interface 207, not all devices will necessar-
ily house these facilities separately. For instance, in some
forms of electronic devices as defined above, processing 200
and memory 202 could be distributed through the same hard-
ware device, as in a neural net, and thus the communications
infrastructure 201 could be a property of the configuration of
that particular hardware device. Many devices do practice a
physical division of tasks as set forth above, however, and
practitioners skilled in the art will understand the conceptual
separation of tasks as applicable even where physical com-
ponents are merged.

This invention could be deployed in a number of ways,
including on a stand-alone electronic device, or as a web
application. Persons of ordinary skill in the art will recognize
a web application as a particular kind of computer program
system designed to function across a network, such as the
internet. A schematic illustration of a web application plat-
form is provided in FIG. 3. Web application platforms typi-
cally include at least one client device 300, which is an elec-
tronic device as described above. The client device 300
connects via some form of network connection to a network
301, such as the Internet. Also connected to the network 301
is at least one server device 302, which is also an electronic
device as described above. Of course, practitioners of ordi-
nary skill in the relevant art will recognize that a web appli-
cation can, and typically does, run on several server devices
302 and a vast and continuously changing population of client
devices 300. Computer programs on both the client device
300 and the server device 302 configure both devices to
perform the functions required of the web application 307.
Web applications 307 can be designed so that the bulk of their
processing tasks are accomplished by the server device 302,

10

15

20

25

30

35

40

45

50

55

60

65

10

as configured to perform those tasks by its web application
program, or alternatively by the client device 300. However,
the web application must inherently involve some program-
ming on each device.

Many electronic devices, as defined herein, come equipped
with a specialized program known as a web browser, that
enables them to act as a client device 300 at least for the
purposes of receiving and displaying data output by the server
device 302 without any additional programming. Web brows-
ers can also act as a platform to run so much of a web
application as is being performed by the client device 300,
and it is a common practice to write the portion of a web
application calculated to run on the client device 300 to be
operated entirely by a web browser. Such browser-executed
programs are referred to herein as “client-side programs,” and
frequently are loaded onto the browser from the server 302 at
the same time as the other content the server 302 sends to the
browser. However, it is also possible to write programs that do
not run on web browsers but still cause an electronic device to
operate as a web application client 300. Thus, as a general
matter, web applications require some computer program
configuration of both the client device 300 (or devices) and
the server device 302 (or devices). The computer program
that comprises the web application component on either elec-
tronic device’s system FIG. 2 configures that device’s pro-
cessor 200 to perform the portion of the overall web applica-
tion’s functions that the programmer chooses to assign to that
device. Persons of ordinary skill in the art will appreciate that
the programming tasks assigned to one device may overlap
with those assigned to another, in the interests of robustness,
flexibility, or performance. Finally, although the best known
example of a web application as used herein uses the kind of
hypertext markup language protocol popularized by the
World Wide Web, practitioners of ordinary skill in the art will
be aware of other network communication protocols, such as
File Transfer Protocol, that also support web applications as
defined herein. The term “application,” as used herein, is any
program or set of programs, including a web application,
designed to work together to practice the disclosed invention.

FIG. 1 illustrates the disclosed method. An electronic
device or set of devices connected by a network such as the
internet perform the steps of the disclosed method. The device
or devices create a display space 100, which is a matrix of
points corresponding to pixels that will display on a device’s
display means. Each point on the matrix may be mapped to
two-dimensional coordinates; the prototype used a horizontal
x coordinate and a vertical y coordinate, but other choices,
such as polar coordinates, are possible. The use of such a
display space should be familiar to persons of ordinary skill in
the art. Next, the device or devices generates a textual data set
101. As used herein, the elements of a textual data set are
word-vector pairs. A “word,” broadly defined as any textually
representable string of symbols, may be defined more nar-
rowly for some implementations of the instant invention. For
instance, some implementations may use words in the collo-
quially familiar sense of single words made of letters. The
vector associated with each word is populated with n catego-
ries of numerical data that concern the word, and is thus an
n-dimensional vector as defined herein. The set of all n-di-
mensional vectors paired to the words in the textual data set
span a vector space, assumed for the purposes of this docu-
ment to be n-dimensional. The electronic device or devices
will then calculate a numerical size attribute to associate with
each word 102, where the size attribute is defined as some
numerical value that determines the font size of the word
when displayed in the word cloud. The size attribute could
theoretically be any numerical attribute that could be applied

US 9,164,667 B2

11

to every word or to its associated vector in the textual data set.
Preferably, the size attribute will aid in ranking the word
against other words via a numerical measure of the word’s
importance; for instance, word sizes could be calculated in
proportion to the number of times the word appears in a given
text. The words and associated vectors are stored in the elec-
tronic device or devices’ memory 103. Persons of ordinary
skill in the art will be aware of data structures suitable both for
storing vectors as collections of their numerical components
(for example, in an array), and for linking each vector to a
string or character array variable representing a word, includ-
ing the use of simple or basic data types, and the creation and
use of abstract data types that could group together and save
the word, vector, size attribute, and other information about
the word-vector pair as useful. Preferably, each vector in the
data set should be normalized, because it makes the remain-
ing calculation and display steps much more manageable and
easy to scale.

Next, the electronic device or set of devices creates a two-
dimensional vector subspace. This can be done in a number of
ways, but the prototype accomplished it by finding two
orthogonal vectors contained in the vector space spanned by
the full set of vectors 104. Persons of ordinary skill in the art
will be aware of many ways in which to do this; perhaps the
simplest method would be to choose two arbitrary vectors
from the data set and calculate the component of the second
one which is orthogonal to the first. The two basis vectors,
referred to as the xVector and the yVector, were normalized,
and as their names suggest formed the basis for the x-y coor-
dinate system the prototype used in the display space. The
subspace, however created, should be stored in memory, by
storing enough information in memory for the system to be
able to ascertain whether any given vector in the n-dimen-
sional data space is or is not in the subspace. The two
orthonormal vectors used in the prototype were sufficient
information to meet that requirement. Subsequently, the elec-
tronic devices project all of the vectors from the data set onto
the subspace 105. In the prototype, this was accomplished by
calculating the projection of each vector onto the xVector, to
obtain the xProjection, which was that vector’s projection’s x
component in the subspace. Then, calculating the projection
of the same vector onto the yVector yielded the vector’s
yProjection, which was the y component of that vector in the
subspace. The vectors’ projections are then mapped to posi-
tions in the display space. As all the vectors in the prototypical
textual data set as well as xVector and yVector were normal-
ized, mapping them to the data space was a matter of scaling
each xVector and yVector to fit the display space, given a
display space height and width in pixels:
x_position=0.5*width*xProjection and
y_position=0.5*height*yProjection. If the vectors are not
normalized, this step is more complicated, and it could be
more complicated still if the coordinate system and method of
defining the subspace are different.

To create a word cloud, each word is displayed 106 at its
corresponding vector’s coordinates in the display space. Of
course, as each word is more than a pixel in height and length,
some choice must be made about how to display each word
relative to its coordinates. Each word could be placed with its
vertical and horizontal midlines intersecting at the coordi-
nates, for example, or the beginning or end of the word could
be placed on that point. Ideally, the placement of the words
should be adjusted to avoid overlap, as well. The prototypical
way to do that involves displaying the words as described in
descending order of size attribute 107. The algorithm must
first check whether the word to be displayed would overlap
108 with any previously displayed (and thus, larger) word if

20

40

45

50

12

displayed at its current coordinates. Overlap detection can be
accomplished by a number of techniques familiar to those
skilled in the art. One approach is simply to check if the pixels
of'the displayed word would be located in the same place as
any pixel of any previously displayed word. If there is a
possibility of overlap, the word’s position must be shifted 109
until the displayed word would not overlap with any previ-
ously displayed word. The shift could be accomplished by
applying any formula that changes the coordinates by some
amount without removing the displayed word from the
screen. The prototypical invention used x and y coordinates in
the display space, and avoided detected overlaps by shifting
the x and y parameters outward on a parameterized Archime-
dian spiral—in other words, for whatever necessary number
of iterations t, applying the formula:

N widthx .05z % cos(.057)
height

and

y =y + .05 xsin(.057).

This approach creates a pleasing effect, and does not require
the words displayed to be shifted too far from their original
positions. FIG. 4 is a screenshot of a word-cloud produced by
the above-described method.

Once the word cloud has been displayed 106, the user can
investigate the data set further FIG. 1 by selecting a word in
the cloud 111 and moving it in some direction in the display
space 112. This selection and movement 111 could be accom-
plished by via any manual data entry means at the user’s
disposal. For example, the user could select a word by click-
ing on it with a mouse and holding down the mouse button,
and move it by moving the mouse on its mouse pad. Alterna-
tively, a single click with a mouse could indicate selection,
obviating the need on the user’s part to hold down the mouse
button as he or she moves the word. The selection and motion
could also be accomplished using a touchscreen, track pad, or
the keyboard, in which the arrow keys (or any others the
implementation designates) could be used to convey the
user’s desired motion. In response to the user’s motion input,
the algorithm changes the underlying subspace to a new one
with the property that in the new subspace, the projection of
the vector corresponding to the selected word will place the
word closer to the location to which the user has moved it 113.
This process is performed repeatedly while the user is moving
the word, so that the word follows the track of the user’s
movement closely, ideally with imperceptible delay. To do so,
it moves at a particular frame rate 112, deriving a new sub-
space 113 at the end of every frame. The prototypical
approach to this recalculation was a three-step process: first
the xVector and yVector that formed the basis of the original
subspace in the prototype were replaced with an average
between each vector and the vector corresponding to the
selected word, weighted by the change in x and change in y,
respectively, that occurred during the frame. Second,
orthogonal versions of the xVector and yVector were pro-
duced using the process of Gram-Schmidt orthogonalization.
Finally, the modified xVector and yVector was each replaced
with an average of itself and its orthogonal version, the aver-
age weighted by the change in x and the change in y, respec-
tively. After the creation of the new subspace, all of the
n-dimensional vectors are then projected on the new subspace
105, and the words are displayed 106, ideally without the
steps of overlap detection 108 and avoidance 109. This is

US 9,164,667 B2

13

repeated for every frame until the system detects that the user
has stopped moving the selected word. The final detection
that the user has stopped moving the word could involve any
of several techniques depending on the implementation,
including event handler based techniques such as detecting
when the user released the mouse button if the event that
signaled selection involved depressing the mouse button and
holding it down, or sampling techniques, such as detecting no
change in position through some number of consecutive
frames. Once the electronic device or devices have ascer-
tained that the user has stopped moving the selected word, the
word cloud is displayed again 106 using the most recently
calculated subspace and the projections of all the other vec-
tors onto that subspace. This final display 106 of the shifted
word cloud repeats the steps of detecting overlaps 108 and
shifting the word locations to avoid overlaps 109 as described
above.

A system that performs the above method is illustrated by
FIG. 3. The system contains at least one electronic device
300, 302 which has a display, data entry means including
manual data entry means, a memory, and a processor. [f more
than one device is involved, they are linked together by a
network 301. The electronic devices’ processors are config-
ured by computer programs to operate an application 307.
The application 307 may be configured as a web application
as described above if more than one electronic device makes
up the system. The application 307 is made up of a Processing
Component 303, a Display Component 304, a Data Entry
Component 305, and a Data Storage Component 306. The
Processing Component 303 is configured to generate a textual
data set whose members consist of a set of words, each of
which is associated with an n-dimensional vector populated
by n numerical values, as described above. Those vectors
describe an n-dimensional data space, as before. The Process-
ing Component 303 also calculates a size attribute for each
word, and creates a two-dimensional subspace of the n-di-
mensional data space, and calculates the projection of each
vector onto that subspace. The Processing Component 303
also calculates a change in the two-dimensional subspace and
recalculates the vector projections on the adjusted subspace,
given a user-selected vector in the n-dimensional vector space
and the change in position, by performing the calculations
described for the method embodiment above.

The Display Component 304 of the system displays word
clouds in a display space with a two dimensional coordinate
system as described above, displaying a word cloud given the
set of n-dimensional vectors with calculated projections, ide-
ally following the placement in descending order of size
attribute steps already set forth. When displaying a newly
created word cloud or displaying a word cloud after auser has
finished moving a selected word, the Display Component 304
also should ideally perform the overlap detection and avoid-
ance steps described above. The Data Entry Component 305
captures data entered by the user via the data entry means. In
particular, the Data Entry Component 305 captures a user
selection of a word displayed in the word cloud by a user
using the manual data entry means, and records the selection
of that word’s corresponding n-dimensional vector. The Data
Entry Component 305 also captures a user motion input by
selecting a frame rate for animating the movement corre-
sponding to the motion input, and then, for each frame, cal-
culating the change in position corresponding to the portion
of the user’s motion input that occurred during that frame.
Finally, the Data Storage Component 306 stores the vector
variables and the linked set of words in the memory of the
electronic device or devices 300 so as to preserve each word’s
relationship with its associated vector. The Data Storage

40

45

55

14

Component 306 also stores the subspace each time it is cal-
culated by the Processing Component 303 in memory, and
stores each vector’s projection onto the current subspace in
the memory as well. It is worth noting that the Processing
Component 303, Display Component 304, Data Entry Com-
ponent 305, and Data Storage Component 306 need not be
separate entities or modules within a particular program as
implemented. The purpose of their status as elements in the
system described in this document is to establish that the
processor or processors of any electronic devices 300, 302
comprising the system must be configured to perform their
functions as set forth, but not to dictate the architecture of a
particular implementation.

According to another embodiment of the method FIG. 1,
the generation of the textual data set 101 involves accepting a
set of documents, of electronic or other form, finding the list
of'words in that set of documents, and saving data concerning
those words to a matrix. Matrices are used very frequently in
representation of textual data. For instance, a matrix in which
both the rows and columns are terms, called a term-associa-
tion matrix, has cells in each of which describes some rela-
tionship between the row term and the column term. In that
case, if the matrix rows were used as vectors the number of
vector components would be equivalent to the number of
terms. Another possibility is a term-document matrix: a
matrix in which the rows represent terms, the columns repre-
sent documents, and each cell contains a number that con-
cerns the relationship between the term in its row and the
document in its column; such a matrix would naturally gen-
erate a vector space in which the number of documents rep-
resented the number of dimensions. For the purposes of this
application, the terms can be any word, as defined above.
“Documents” may be any collections of such words, includ-
ing books, articles, papers, web pages, and other collections
of words in the colloquial sense, the genomes of organisms,
chromosomes, or plasmids, the amino acid sequences repre-
senting proteins, and various samples of text or textually
representable patterns containing the textual data patterns the
user wishes to investigate. It is common for the cells in a
matrix representing one or more documents and the terms
there into contain numerical measures pertaining to the fre-
quency of appearance of the terms in the documents, includ-
ing but not limited to a simple count of the number of appear-
ances of a term in a document; it is common for term-
association matrices to contain cells counting the number of
co-occurrences of the row and column terms. Generation of
the matrix generally involves developing a list of terms, often
with reference to one or more of the documents in the docu-
ment set, obtaining some number of lists of anything else
including the same terms again, collecting statistical infor-
mation about the terms from the list from the document set as
a whole, with reference to whatever is discussed in the other
lists, possibly followed by some calculations using those
statistics. It would also be possible to store the values and
generate the vector space using a higher-order tensor; for
instance, a 3¢ order tensor could be used to combine the
elements of a term-document matrix and a term-association
matrix.

There are potentially many ways to obtain the desired
vectors from such a matrix. Perhaps the simplest way to do so
would be to choose the rows corresponding to the terms as the
vectors. However, research has shown that engaging in fur-
ther manipulations of a matrix and its component vectors can
produce avector representation that proffers superior insights
into the relationships between terms. This is especially the
case where the algorithm employed produces a representation
of fewer dimensions that retains and in some cases concen-

US 9,164,667 B2

15

trates useful information about the higher-dimensional rep-
resentation implied by the initial matrix. An algorithm that
persons skilled in the art will recognize as particularly useful
is that of latent semantic indexing (L.SI), which reduces a
vector space of thousands of dimensions to a much smaller
vector space, for example of a hundred dimensions, while
significantly improving the ability of the representation to
capture subtle relationships between words. Given an MxN
matrix C that represents data concerning a text, LSI involves
first performing a singular value decomposition (SVD) on C
by factoring C as follows: C=UZV7Z, where U is a matrix
whose columns are the orthogonal eigenvectors of CC” where
the columns of V are the orthogonal eigenvectors of C'C, and
where Z is an MxN matrix defined in terms of the eigenvalues
of CC7, which are the same as the eigenvalues of C*C and
which are ordered in descending size and denoted as
Ao ... A, ... A, where there are a total of r such eigenvalues.
The entries of Z are all zero, except the first r diagonal entries
from the upper left corner of the matrix, which are set to the
eigenvalues like so: 2, =/, Vi. Since all vectors on which a
matrix can operate may be expressed as a linear expression of
the matrix’s eigenvectors, and since large eigenvalues affect
eigenvectors much more strongly than small eigenvalues, if
the lower-right diagonal entries of Z are set to zero, producing
3, the resulting “cropped” matrix C,=UZ, V¥ will have a very
similar effect to that of the original C with regard to transfor-
mation of vectors. Thus, producing Zk creates a new C, that
captures a great deal of the information originally in C in far
fewer dimensions; it is typical in LSI to start with a C with
thousands of dimensions and produce a “cropped” C, with
dimensions on the order of one hundred. As intuition might
predict, this produces a much higher information density. The
process of LSI has also demonstrated a sometimes uncanny
ability to deal with patterns such as synonyms and polyse-
mous words that can frustrate more traditional textual search
algorithms. Generating vectors from the rows of C, allows the
algorithm to operate on a smaller and more manageable vec-
tor space that represents the relationships between words, and
between words and documents, more effectively. As persons
skilled in the art will be aware, there are other mathematical
algorithms for improving analysis of relationships of words
and documents as captured by term-document matrices. In
particular, the truncated SVD process can also be run on other
forms of matrices representing terms in some way, and indeed
on matrices in general. The corresponding system embodi-
ment involves configuring the Processing Component 303 to
create a matrix as set forth above, and to use that matrix to
generate the n-dimensional vectors used to create the word
cloud.

Where the textual data set is derived from a set of docu-
ments, the user might wish to be able to look ata document in
the set and compare it to the word cloud as portrayed in
various projections. To help provide that option, an embodi-
ment of the invention allows the user to enter a search query
119. The query is matched against some representation of the
documents from which the textual data set is derived 120, and
the most closely matched documents are displayed to the user
121. The process of matching the query to the document 120
could involve any textual searching algorithm known in the
art, including string-comparison searches, boolean searches
with or without wildcard characters, and any of the various
natural language searching algorithms that exist. The exact
nature of the search that may be performed will depend on the
way in which the document is saved in the device memories;
if the entire document is present in the memory, it is obviously
possible to search the entire document, whereas if the repre-

10

15

20

25

30

35

40

45

50

55

60

65

16

sentation of the document summarizes its contents in some
way, the search might be able to proceed much more quickly,
but can only be as comprehensive as the summary permits.
The display of the documents to the user 121 is also an
implementation-specific decision. Perhaps the best approach
is simply to list the titles of the documents somewhere outside
the display window of the word cloud. The user can then look
at the documents that came up as matching, and compare the
text within them to the relationships they observe in the word
cloud. The related system embodiment involves configuring
the Data Storage Component 306 to maintain a representation
of each document in its memory, and configuring the Data
Entry Component 305 to accept a query from a user via the
manual data entry means. The Processing Component is con-
figured to match the query to the document representations
stored and retrieved by the Data Storage Component 307, and
the Display Component 304 is configured to display match-
ing documents.

Another embodiment of the method FIG. 1 sets the word
size attributes 102 based upon a calculation of “term fre-
quency-inverse document frequency” (tf-idf). What tf-idf
measures is the importance of a term t in a given document d.
Mathematically, tf-idf is a product of the two terms: tfxidf.
The first operand, tf, is a statistic reflecting how often t
appears in d. As a general matter, tf increases as the number of
appearances in the document in question increases. The sec-
ond term, idf, measures how often the term appears in other
documents in a document set D, and decreases as the fre-
quency in other documents in D increases. If the term appears
very frequently in one document, and very infrequently in
other documents within D, then tfxidf will be large, indicating
that for that document in the context of that document set, the
term is very important. The reason to use this measure of
word-importance, as opposed to a simpler method such as
merely counting the number of appearances of a given word,
is to avoid inflating the importance of terms that are usually
frequent in any document, such as “a” or “the”, as their
frequency only reflects their importance to language in gen-
eral, as opposed to the subject matter of the document in
question. One could of course design an algorithm that
explicitly ignores certain words, like “a” or “the,” but using
tfxidf means that the writer of the algorithm does not have to
find the words in a given set or category of documents that are
used sufficiently universally to render those words’ frequency
useless as a measure of their importance to a particular docu-
ment in that context. Furthermore, tfxidf for a given word
naturally changes with a new choice of D, without requiring
any recalibration on the part of a programmer. For example, if
d is a patent application, and D is a set of patent applications,
tfxidf for the word “invention” would be low, because it
appears fairly frequently in all patent documents. In that
context, “invention” is not an important word: a user looking
at a set of patent applications will already be aware they all
concern inventions. However, if d was a patent application (or
a collection of patent applications), and D was a set of legal
documents from all fields of the law, the word “invention”
would have a high tfxidf for d, which would demonstrate a
useful fact: that the term “invention” is important for patent
applications as distinguished from other legal documents.

As the foregoing discussion illustrates, the term “docu-
ment” or d and the term “document set” or D can be very
broadly defined for tfxidf. For example, D could be a single
document, and d could be a collection of sections of that
document. On the other hand, d could be a set of documents,
such as the set of all documents you have collected on a
particular subject, and D could be a larger set of documents,
such as some random sampling of documents in general, or of

US 9,164,667 B2

17

documents expressly not about the subject of the documents
that make up d. The usefulness of tfxidf is also not limited to
documents made up of language in the conventional sense, as
it could be used to discover the relative importance of any
pattern that may be represented in textual form within a larger
collection of similar patterns, such as a genome, an encrypted
text, or a text written in an alphabet that has not been deci-
phered. It is perhaps unnecessary to note that the use of this
statistical analysis of documents is largely a product of the
digital age. The use of computers and the internet is of course
essential for the rapid collation of sets of documents, the
counting of word appearances in all the documents, and the
many calculations required to achieve a useful tfxidf for a set
of words; the number of man-hours required to perform such
operations without digital automation would be prohibitive.
In any case the beauty of this mathematical approach to
textual analysis is that it can inform a user about the contents
of'adocument of almost any size without the user ever reading
the document.

The first operand, tf, is the statistic known as “term fre-
quency,” a measure of the number of appearances of the word
in a particular document. Term frequency could be a simple
count of the number of appearances in the document, denoted
f(t,d), where t is the term, and d is the document in which the
term is counted. Another method for calculating tfis to scale
f(t,d) logarithmically, according to the equation: tf=1+log(f
(t,d)) with t£=0 when f{t,d) is zero. Another approach is to
divide f(t,d) by the maximum frequency of any term in the
document, which avoids the erroneous conclusion that a term
is important to a document despite appearing infrequently,
merely because the document is long. The second operand,
inverse document frequency (idf) is generally rendered as
follows:

|DI
Ll reprea)

where |DI is the number of documents in the document set,
and {d eD: ted} is the number of documents that contain any
appearances of t.

The prototype of the instant invention set word sizes
according to tfxidf, further weighted by a factor derived from
the word’s frequency in the GOOGLE® ngram set, which is
a set of term frequency counts for phrases of up to five words
throughout the online digital book collection maintained by
GOOGLE®. Specifically, where the ngram frequency of a
word was gfrequency, the tf-idf would be multiplied by

1
v gfrequency '

For a multiple-word phrase, it may be desirable to estimate
the phrase’s frequency instead of looking it up in a very large
list of GOOGLE® ngrams. If the phrase can be broken into
shorter phrases with raw frequencies a and b, one can over-
estimate the phrase’s frequency as

axb
a+b’

This operation is chosen because it scales with a and b and
follows the associative law, so it can be repeated until the

20

35

40

45

50

55

60

65

18

phrase is broken down into single words, and therefore only
the frequencies of single words need to be readily available in
the computer’s memory. The resulting estimate will usually
be higher than the actual frequency, but overestimating the
frequency tends to lead to a more understandable word cloud
than underestimating it. The related system embodiment FI1G.
3 involves configuring the Processing Component 303 to
calculate a form of tfxidf as described above for each word,
and set each word’s size attribute based upon that calculation.

Although there are a number of ways to derive the initial
subspace 104 as set forth in the method FIG. 1, a particularly
useful way to do so is one that ensures that the projection of
every dimension in the high-dimensional space points in a
different direction on the 2-dimensional plane containing the
subspace, with no complete overlaps. One way to do that was
used by the prototype of the invention to generate the initial
x Vector and y Vector used by the prototype to define the initial
subspace by iterating through all the dimensions, setting
xVector,=cos(i), yVector,=sin(i)Vi. Persons skilled in the art
will recognize number denoted by i in this formula as the
vector component’s index number, and that when used as a
subscript, it indicates the component i terms down the list of
components that define the vector. For instance, xVector; is
the fifth component of xVector. Most abstract data type rep-
resentations of vectors allow an algorithm to look up compo-
nents of the stored vector by index number. The correspond-
ing system embodiment FIG. 3 requires configuring the
Processing Component 303 to derive a subspace in a manner
that ensures that every dimension in the high-dimensional
space points in a different direction on the 2-dimensional
plane containing the subspace.

A signal virtue of the above-described method is its ability
to give users a intuitive way of exploring virtually any text,
containing any number of documents, without necessarily
reviewing the documents first. With that ability comes a new
problem, which is that the displayed word-cloud could con-
tain terms the user does not want to see, either because they
are not useful, or because their display could cause problems
for the user. An example of the former case could involve text
downloaded from TWITTER®, and the word “RT,” which
signifies that a message has been “re tweeted” or retransmit-
ted to users of TWITTER®. Virtually any segment of mes-
sages on that social networking platform is likely to contain
many instances of the word “RT”, causing it to display promi-
nently in the word cloud if the corpus from which the idf is
taken is not also from the same platform. An example of the
latter is the use of profane language, or personal information.
In either case, a list can be maintained of objectionable term
categories, and at some point in the above method, each word
could be compared to that list, and its treatment altered as a
result 118. In the simplest case, the entries in the list could be
words themselves, such as swear words or words like “RT,”
and a simple string comparison could suffice to determine that
the word should be suppressed. More complex examples
could be the suppression of nine-digit decimal numbers con-
taining dashes after the third and fifth digit, such as social
security numbers, which would require comparison by pat-
tern to a form template stored in the list. The exact treatment
118 of words that match the list is also an implementation-
specific question: some users might want to know that some
words are there, for instance, as represented by a dot or other
masked notation, while other words might be better omitted
entirely. The user could be given a choice of default screening
lists, or the ability to create one by custom. The corresponding
system embodiment involves configuring the Data Storage
Component 306 to maintain such a list, configuring the Pro-
cessing Component 303 to compare words from the textual

US 9,164,667 B2

19

data set to the word categories on the list, and configuring the
Display Component 304 to alter the display of any word that
matches a category from the list.

In some embodiments of the invention, the word cloud is
further enhanced to show the user relationships between the
words. The method FIG. 1 for doing this requires performing
a calculation to determine two words’ degree of relatedness
114. What makes two words closely or distantly related varies
with the implementation. One fairly well-known approach is
to count how often two words appear within a certain number
of words of each other in a document or set of documents; the
higher the frequency of such appearances, the more closely
the words would be said to be related. Persons of ordinary
skill in the art will be aware of other ways to gauge related-
ness. The degree of relatedness is depicted in the word cloud
using color similarity 115: if the user has selected a word, it
displays in the word cloud in a color that contrasts with the
default color of the word cloud. Other words are displayed in
colors that are more similar to the selected word’s color if the
other words are closely related. A numerical quantity or rela-
tionship may be readily mapped to a color using the numerical
color schemes common in graphics software. The corre-
sponding system embodiment FIG. 3 involves configuring the
Processing Component 303 to calculate degree of relatedness
between two words, and configuring the Display Component
305 to display the selected word in a color contrasting with
the default color, and to display other words with coloration
indicating the degree of relatedness with the selected word.

A useful metric for degree of relatedness that relies on the
vectors in the data set as opposed to the words is cosine
similarity. Cosine similarity is a technique for measuring the
degree of separation between any two vectors, by measuring
the cosine of the vectors’ angle of separation. If the vectors
are pointing in exactly the same direction, the angle between
them is zero, and the cosine of that angle will be 1, whereas if
they are pointing in opposite directions, the angle between
them is mwradians, and the cosine of that angle will be 1. If the
angle is greater than = radians, the cosine is the same as it is
for the opposite angle; thus, the cosine of the angle between
the vectors varies inversely with the minimum angle between
the vectors, and the larger the cosine is, the closer the vectors
are to pointing in the same direction. The cosine of the angle
0 between two vectors a and b may be calculated as follows:

a-b

0) = .
€SO = e

A method embodiment FIG. 1 involves using cosine similar-
ity between the n-dimensional vectors associated with two
words to assess the words’ degree of relatedness 114. The
corresponding system claim FIG. 3 involves configuring the
Processing Component 303 to determine the degree of simi-
larity between two words based upon cosine similarity.
Another embodiment of the method FIG. 1 involves allow-
ing the user to select more than one topic and use coloration
to indicate which words in the word cloud are most related to
the selected topics. The method to do so is to allow the user to
create a list of vectors in the data space, which may or may not
be words that appear in the word cloud, and displaying a
different color next each vector in that list 116. When the user
selects some of the vectors on the list, the display color of the
words in the cloud is changed to reflect those words’ similar-
ity to the selected words 117. This may be accomplished by
calculating the cosine similarity of each word in the word
cloud to each selected vector. The contribution of each

10

15

20

25

30

35

40

45

50

55

60

65

20

selected vector’s color to the color of a displayed word will be
in proportion to the cosine similarity of that vector to that
word. For example, in a system where each display color is
defined by a number between 0 and 255 representing each of
red, green, and blue, (the total value being called its “RGB”
value) each word in the cloud may be initialized to a certain
RGB value that represents the base or background value, at
which every word in the cloud will display if no vector has
been selected to which the words may be compared. When a
set of vectors has been selected from the list, the algorithm
loops through the selected vectors with regard to each word in
the cloud; for each selected vector, its relatedness to the word
is assessed using cosine similarity to that word’s vector, and
the red, green, and blue values of the vector’s RGB are each
multiplied by a number proportional to that degree of simi-
larity, and added to the red, green, and blue values of the
word’s RGB. The result is that the word’s red, blue, and green
values will be more similar to the most RGB of the most
cosine-similar vector on the list, but also somewhat similar to
other fairly cosine-similar vectors. The color values of vec-
tors on the list whose cosine similarity to the word is less than
or equal to zero will be not be added to the word at all; thus
words related to none of the vectors in the selected list will
remain at the background color. The most similar vector of all
can have its weight augmented, by raising to a certain power,
or multiplying by some factor, to emphasize the closeness of
the relationship. When the word has received all of the terms’
contributions to its RGB, the RGB must be scaled, and may
need to be rounded, to fit each value to an integer between 0
and 255. Further tuning can be made to brighten colors and
produce other aesthetic effects, by adjusting the RGB values
slightly to make them more appealing or noticeable.

The associated system embodiment involves configuring
the Display Component 304 to display the list of vectors with
associated colors, and to change the display colors of other
words in the list to reflect those words’ similarity to the
selected words. The Data Entry Component 305 is configured
to record the user selections of words on the list.

One way to create the list of vectors to compare to the word
cloud as described above is to accept search queries from the
user 119, and convert the queries into vectors in the n-dimen-
sional data space 122. This is accomplished by parsing the
query for words in the textual data set, and then using the set
of words thus acquired to map the query to the vector space.
It is worth reiterating at this point that the words in the textual
data set, as defined herein, could include phrases, and thus the
query might most closely match a phrase, as opposed to a
collection of words; furthermore, the query might match
equally well a phrase and a single word, in which case the
implementation could include each in the list of set of words
used in the mapping, or alternatively the list could be culled
according to some matching score. Of course, the process of
mapping a query to the vector space will depend on the
significance of the dimensions of that space. For instance, if
the vector space was built using a term-document matrix, the
dimensions are documents, or are derived from documents,
and the query might be built by adding together the words
from the set of words found in the query. If the vector space
was built using a term-association matrix, on the other hand,
the dimensions in the space are derived from the words them-
selves, and the query could thus be built using its word set to
create components. The information from the word-associ-
ated vectors could also be included in the query vector cre-
ation process 122. Once the query vector is created 122, it
must be assigned a color 123 so that its selection by the user
can highlight related terms. The vector could be assigned a
default color from a set of visually distinct colors maintained

US 9,164,667 B2

21

in the device memory. It might also be advisable to permit the
user to customize the vector color, as this color shading pro-
cess is meant to allow users to use their visual intuition to
explore relationships between words, and the user’s choice of
a color could be guided by that intuition as well; in any case,
the choice of colors is partially an aesthetic choice, and users’
ability to exercise their own tastes in the matter will lead to
greater user satisfaction. Once the vector is created and
assigned its color, the vector and color are saved together in
the device memory and displayed as a member of the list as
discussed above. As may be apparent, this embodiment could
be combined with the ability to search documents used to
create the textual data set, permitting the query to be com-
pared simultaneously to the documents it matches, and to the
words in the cloud. As before, anything that can be repre-
sented as a vector in the data space can be represented as a
vector on the list, along with the user queries.

The corresponding system embodiment involves configur-
ing the Data Entry Component 305 to accept a user-input
search query. The Processing Component 303 is designed to
convert the query into a vector in the n-dimensional data
space and to assign a display color to the vector; of course if
user-customized colors are permitted by the implementation,
the Display Component 304 should be configured to show the
user options and the colors selected thus far, and the Data
Entry Component 305 should be configured to accept the user
choice of colors. However the color is assigned to the vector,
the Data storage Component 306 should be configured to
store the vector and the associated color in the device
memory. Finally, the Display Component 304 should be con-
figured to display the vector, with its associated color, as a
member of the list from which the user can select vectors to
show their relatedness to words in the cloud as described
above.

It will be understood that the invention may be embodied in
other specific forms without departing from the spirit or cen-
tral characteristics thereof. The present examples and
embodiments, therefore, are to be considered in all respects as
illustrative and not restrictive, and the invention is not to be
limited to the details given herein.

What is claimed is:

1. A method performed by at least one electronic device
having a processor and a memory for exploring an n-dimen-
sional textual data set using word cloud representations of
two-dimensional projections of the data set, comprising:

providing a display space with a two dimensional coordi-

nate system,

generating a textual data set whose members comprise a set

of words, each of which is associated with an n-dimen-
sional vector populated by n numerical values, said vec-
tors defining an n-dimensional data space;

storing said textual data set in said memory so as to pre-

serve each word’s relationship with its associated vec-
tor;

calculating a size attribute for each word in said textual data

set;

creating an initial two-dimensional subspace of the n-di-

mensional data space and storing said subspace in said
memory;

calculating the projection of each said n-dimensional vec-

tor onto said subspace, and saving said projection to
memory;

displaying a word cloud by performing steps comprising:

placing each word from the textual data set in said dis-
play space at coordinates determined by its projection
on said subspace; and

10

15

20

25

30

35

40

45

50

55

60

65

22

displaying said word with a font size corresponding to its
size attribute;

receiving a user’s selection of a word displayed in the word

cloud via said electronic device’s manual data entry
means;

receiving a user’s motion input via said electronic device’s

manual data entry means;

shifting said word cloud by performing steps comprising:

selecting a frame rate for animating the movement cor-
responding to said user’s motion input;

for each frame, calculating the change in position in the
display space corresponding to the portion of said
user’s motion input that occurred during said frame;

replacing said two-dimensional subspace with another
two-dimensional subspace in which the projection of
the selected word’s associated vector causes the
selected word to be displayed at the new location
dictated by said change in position;

projecting each vector on the new subspace and saving
each said projection to said memory;

placing each word at coordinates in said display space
corresponding to its vector’s new projection; and

repeating for each frame until detecting cessation of
motion;

upon cessation of motion, repeating the steps comprising

displaying a word cloud using each word’s associated
vector’s most recent projection on the most recent sub-
space.

2. A method according to claim 1, wherein the step of
generating a textual data set comprises:

providing a set of documents;

obtaining said words from said documents;

creating a matrix containing data concerning said words

and documents; and

using said matrix to produce said n-dimensional vectors.

3. A method according to claim 2 further comprising:

maintaining some representation of each document from

said document set;

accepting a user-input search query;

matching said query to said document representations; and

displaying documents that match said query.

4. A method according to claim 1, wherein the size attribute
of each word is determined using a term frequency-inverse
document frequency calculation.

5. A method according to claim 1, wherein the initially
created subspace is one wherein the projection on the sub-
space of each of the n dimensions points in a distinct direc-
tion.

6. A method according to claim 1, further comprising:

maintaining a list of word categories in said memory; and

altering the display of any word that matches a category
from said list.

7. A method according to claim 1, further comprising:

calculating a metric for degree of relatedness between two

words in said textual data set;

receiving a user selection of a word;

displaying said selected word in a color that contrasts with

the default display color; and

displaying all other words in the textual data set with col-

oration indicating the degree of relatedness between that
each word and the selected word.

8. A method according to claim 7 wherein the degree of
relatedness between two words is determined by cosine simi-
larity between said words’ associated vectors.

US 9,164,667 B2

23

9. A method according to claim 7 further comprising:

enabling a user to create a list of vectors in said n-dimen-
sional data space each of which is associated with a
color;

recording a user selection of one or more vectors from said
list; and

changing the display color of each word in said word cloud
to reflect its similarity to each of said selected vectors.

10. A method according to claim 9, wherein said user
creation of a vector on said list of vectors comprises:

accepting a user-input search query;

converting said user-input query into a vector in said n-di-
mensional data space;

assigning a display color to said vector;

saving said vector with said display color in said device
memory; and

displaying said vector with said display color as a member
of said list of vectors.

11. A system for displaying an n-dimensional textual data
set as a word cloud comprising one electronic device, or a set
of two or more electronic devices linked by a network,
coupledto adisplay and to data entry means including manual
data entry means, each electronic device having a memory,
and a processor, said processors together or singly operable to
execute instructions to perform functions comprising:

a Processing Component configured to:

generate a textual data set whose members comprise a
set of words, each of which is associated with an
n-dimensional vector populated by n numerical val-
ues, said vectors defining an n-dimensional data
space;

calculate a size attribute for each word in said textual
data set;

create an initial two-dimensional subspace of the n-di-
mensional data space;

calculate the projection of each said n-dimensional vec-
tor onto said subspace; and

derive a new subspace and vector projections thereon
given a user-selected vector in said n-dimensional
vector space and a variable representing change in
position within a display space;

a Display Component configured to display word clouds in
a display space with a two dimensional coordinate sys-
tem, and specifically to perform steps comprising dis-
playing a word cloud given a set of n-dimensional vec-
tors with calculated projections and corresponding
words with calculated size attributes by:
placing each word at coordinates determined by its vec-

tor’s projection; and

displaying said word with a font size corresponding to its
size attribute;

a Data Entry Component configured to capture data
entered by the user via said data entry means, and par-
ticularly to:
capture a selection of a word displayed in said word

cloud by a user via said manual data entry means, and
record the selection of that word’s corresponding
n-dimensional vector;
capture a user motion input by:
selecting a frame rate for animating the movement
corresponding to said user’s motion input;

for each frame, calculating the change in position
corresponding to the portion of said user’s motion
input that occurred during said frame; and

repeating for each frame until the cessation of said
motion input; and

identifying the cessation of the motion input;

10

15

20

25

30

35

40

45

50

55

60

65

24

a Data Storage Component configured to
store said textual data set in said memory so as to pre-
serve each word’s relationship with its associated vec-
tor;
store said subspace in said memory; and
store each vector’s projection in said memory.

12. A system according to claim 11, wherein said Process-
ing Component is configured to perform said generation of
said textual data set by:

providing a document set comprising n documents;

creating a matrix containing data concerning said words

and documents; and

using said matrix to produce said n-dimensional vectors.

13. A system according to claim 12, wherein said Data
Storage Component is configured to maintain in said memory
a representation of each document in said set of documents,
wherein said Data Entry Component is configured to accept a
query from a user via said manual data entry means, wherein
said Processing Component is configured to match said query
to said document representations, and wherein said Display
Component is configured to display matching documents.

14. A system according to claim 11, wherein said Process-
ing Component is configured to calculate each word’s size
attribute using a term frequency-inverse document frequency
calculation.

15. A system according to claim 11, wherein the Process-
ing Component is further configured to initialize said sub-
space so that the projection on the subspace of each of the n
dimensions points in a distinct direction.

16. A system according to claim 11, wherein said Data
Storage Component is further configured to maintain in said
memory a list of word categories, wherein said Processing
Component is configured to compare words from the textual
data set to the word categories on said list, and wherein said
Display Component is configured to alter the display of words
matching said word categories.

17. A system according to claim 11, wherein said Process-
ing Component is configured to calculate a metric for degree
of relatedness between two words and wherein said Display
Component is configured to display said selected word in a
color that contrasts with the default display color and to
display all other words with coloration indicating the degree
of relatedness between each word and the selected word.

18. A system according to claim 17 wherein said Process-
ing Component is configured to calculate said metric for
degree of relatedness between two words using cosine simi-
larity between said two words’ associated vectors.

19. A system according to claim 11 wherein said Display
Component is configured to display a list of vectors in said
n-dimensional data space each of which is associated with a
color, and given one or more selected vectors from said list to
change the display color in the word cloud of each word to
reflect its similarity to each vector selected, and wherein said
Data Entry Component is configured to record user creation
of a list of vectors with associated colors, and to record a user
selection of one or more vectors from said list.

20. A system according to claim 19, wherein said Data
Entry Component is configured to accept a user-input search
query, wherein said Processing Component is configured to
convert said user-input query into a vector in said n-dimen-
sional data space and to assign a display color to said vector,
wherein said Data Storage Component is configured to save
said vector in said device memory with said display color, and
wherein said Display Component is configured to display
said vector with said display color as a member of said list of
vectors.

